فرمول هایی از نوع تفاضلات متناهی فشرده با استفاده از توابع پایه شعاعی بر اساس نقاط پراکنده

thesis
abstract

چکیده: در این پایان نامه ابتدا به درون یابی با استفاده از توابع پایه شعاعی می پردازیم و سپس با استفاده از درون یابی فرمول های تفاضلات متناهی را به دست آورده و آن ها را برای حل عددی معادلات با مشتقات پاره ای خطی وغیر خطی استفاده می کنیم. جواب تقریبی چند معادله ی خطی و غیر خطی لاپلاس و گرما را به دست آورده و تاثیر پارامتر شکل را در معادلات بررسی می کنیم و در نهایت پایداری و همگرایی این روش ها را بررسی خواهیم کرد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

فرمول های نوع تفاضلات متناهی فشرده داده های پراکنده پدیدآمده از توابع پایه شعاعی

یک را ه برای افزایش دقت طرح های تفاضلی متناهی استفاده از فرمول های مشتق گیری عددی با دقت بالاست که این منجر به افزایش تعداد گره های موجود در الگو می شود. افزایش تعداد گره ها باعث بروز مشکلات متعددی می گردد. برای حل این مشکلات می توان از تقریب های تفاضلات متناهی فشرده استفاده کرد. در این پایان نامه تعمیمی از فرمول های تفاضلات متناهی فشرده برای داده های پراکنده و توابع پایه شعاعی ارائه شده است که...

15 صفحه اول

ساختن روش‌های تفاضلات متناهی مبتنی بر توابع پایه شعاعی و استفاده از آنها برای حل معادلات دیفرانسیل با هندسه دلخواه

In this paper we, obtain the weight of radial basis finite difference formula for some differential operators. These weights are used to obtain the local truncation error in powers of the inter-node distance and the shape parameter of radial basis functions. We show that for each difference formula, there is a value of the shape parameter for which RBF-FD formulas are more accurate than the cor...

full text

کاربرد الگوریتم ژنتیک در مدل‌سازی محلی میدان ثقل زمین با استفاده از توابع پایه شعاعی کروی

توابع پایه شعاعی کروی همواره به صورت گسترده‌ای برای مدل‌سازی محلی میدان ثقل زمین استفاده شده­اند. تعیین بهینه توابع پایه شعاعی کروی از نظر شکل و موقعیتآن‌ها، یکی از مهم­ترین چالش­ها در انجام مدل‌سازی بر مبنای این توابع پایه است. در این تحقیق یک روش بهینه­سازی برای مدل‌سازی محلی میدان ثقل زمین با استفاده از توابع پایه شعاعی کروی پیشنهاد شده است. بدین منظور، ابتدا آنومالی پتانسیل ثقل زمین به صورت...

full text

تقریب تابع ارزش عمل با استفاده از شبکه توابع پایه شعاعی برای یادگیری تقویتی

مشکل تنگنای ابعاد، یکی از چالش هایی است که کاربرد الگوریتم های یادگیری تقویتی گسسته را در مورد مسائل کنترلی واقعی که دارای فضای حالت و عمل بزرگ و یا پیوسته می باشند محدود نموده است. ترکیب روش های آموزشی گسسته با تقریب زننده های تابعی برای حل این مشکل چندی است مورد توجه محققان قرارگرفته است. در همین راستا در این مقاله یک الگوریتم جدید یادگیری تقویتی عصبی (NRL) بر مبنای معماری نقاد- تنها معرف...

full text

بکارگیری تجزیه دامنه در حل عددی معادلات دیفرانسیل با مشتقات جزیی (با استفاده از روش تفاضلات متناهی و روش هم محلی مبتنی بر توابع پایه شعاعی)

در این پایان نامه ابتدا به معرفی توابع پایه شعاعی پرداخته و سپس با استفاده از روش تفاضلات متناهی و روش هم محلی مبتنی بر توابع پایه شعاعی به حل معادلات دیفرانسیل با مشتقات جزئی پرداخته می شود. در حل این معادلات بر روی دامنه های بزرگ با استفاده از روش هم محلی مبتنی بر توابع پایه شعاعی، احتمال بدوضعی ماتریس ضرائب دستگاه معادلات خطی حاصل بالا می رود. برای غلبه بر این مشکل، روشی تحت عنوان روش تجزیه ...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023